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EXECUTIVE SUMMARY 
The report describes progress made towards developing a scientifically rigorous methodology 

for operational probabilistic quantitative precipitation estimation (PQPE) for hydrologic 
applications.  The methodology will be based on the WSR-88D measurements complemented 
with rain gauge and satellite data.  It is flexible enough to allow a smooth transition to the 
polarimetric era after the planned upgrade of the operational network of radars.  The overall 
strategy is to demonstrate hydrologic utility of the probabilistic information of the precipitation 
estimates.  This involves two major elements (1) developing a theoretical and operational 
framework for probabilistic radar-rainfall estimation; and (2) connecting the PQPE input with a 
hydrologic application.  This report documents initial progress made in both elements. 

The authors define a radar PQPE product as a set of situation-dependent parameter values in a 
model describing the probability distributions of the uncertainties in the radar-estimated rainfall.  
The distributions quantify the available probabilistic knowledge about the true spatial rainfall 
that is likely, given current radar measurements and other available information.  The model 
parameter values determine unambiguously the uncertainty distributions for each operationally 
useful distance from the radar and spatiotemporal averaging scale.  This allows generating 
different user-specific outputs demanded by various operational applications.  Among these 
outputs are the uncertainty bounds and probabilities of exceedence.  Generating an ensemble of 
the probable rainfall maps to provide the input for the ensemble forecasting schemes is also 
possible.  The report presents early results of the model formulation. 

The hydrologic utility of the PQPE methodology will be demonstrated using the flash flood 
forecasting problem.  This part of the project is performed in close collaboration with the 
Hydrologic Research Center (HRC).  The demonstration is limited geographically to the 
Oklahoma region.  This report documents developments leading to PQPE application in a Flash 
Flood Guidance and Monitoring system.  The authors present uncertainty analysis of the Thresh-
R model which is the basis for FFGM and of the soil moisture accounting model.  The early 
results also include effect of the uncertainty in the rainfall input via an example of ensemble 
PQPE simulation.   
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Useful Acronyms 
 
ABRFC Arkansas Basin River Forecast Center 
CDP conditional distribution of precipitation 
CSI Critical Success Index 
DHR Digital Hybrid Scan Reflectivity 
DPA Digital Precipitation Array 
FAR False Alarm Ratio 
FFG Flash Flood Guidance 
FFMP Flash Flood Monitoring and Prediction 
HL Hydrologic Laboratory 
HRC Hydrologic Research Center 
HRAP Hydrologic Rainfall Analysis Project 
KDP specific differential phase shift 
KINX WSR-88D in Tulsa, OK 
KTLX WSR-88D in Twin Lakes, OK 
MAP Mean Area Precipitation 
MFB Mean-field-bias 
MPE Multisensor Precipitation Estimation 
NCDC National Climatic Data Center 
NSSL National Severe Storms Laboratory 
NWS National Weather Service 
PED product-error-driven 
POD Probability of Detection 
PPS Precipitation Processing System 
PQPE Probabilistic Quantitative Precipitation Estimation 
RFC River Forecast Center 
SOW Statement of Work 
WFO Weather Forecast Office 
WSR-88D Weather Surveillance Radar - Doppler 
Z radar reflectivity 
ZDR differential reflectivity 
CSSA Convective/Stratiform Separation Algorithm 
REC Radar Echo Classifier 
RCA Range Correction Algorithm 
EPPS Enhanced PPS 
HCA Hydrometeor Classification Algorithm 
EPRE Enhanced Preprocessing 
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A. BACKGROUND INFORMATION 
Hydrologic forecasting and water resources services performed for the public by the National 

Weather Service (NWS) require decision making in presence of uncertainty due to limitation in 
our understanding of nature, available information, and predictability of natural phenomena.  
High space and time resolution precipitation estimates are the main input for many of the 
forecasting and decision support models and systems.  These estimates are based on information 
from the network of weather radars WSR-88D combined with rain gauge and satellite data (e.g. 
Fread et al. 1995; Stallings and Wenzel 1995).  The current operational NWS multi-sensor 
rainfall algorithms produce only deterministic fields of precipitation intensity and accumulations 
(e.g. Fulton et al. 1998).  The operationally provided rainfall products are deterministic in the 
sense the sense that, while significant error associated with these products are widely 
acknowledged, no quantitative information on their magnitude associated with the products is 
routinely available.  Users of these products would be better able to make informed decisions if 
they knew not only the best rainfall estimate but also the associated uncertainty and/or range that 
most likely includes the actual amount of rainfall that occurred. 

The Office of Hydrologic Development of the NWS intends to address this shortcoming of 
the existing algorithms by preparing a comprehensive plan for development of a new generation 
of algorithms for the precipitation estimation.  These algorithms are referred to as probabilistic 
quantitative precipitation estimation, or PQPE.  Krajewski and Ciach (2003) developed a 
comprehensive plan for nation-wide development of the PQPE algorithms.  Their report lays out 
an early formulation of the problem, identifies conceptual, methodological and technological 
issues, and proposes a feasible plan of action.  However, because the plan calls for considerable 
expenditures of resources, the PQPE Advisory Team suggested preceding it with a 
geographically focused effort of an end-to-end demonstration of the utility of the PQPE 
approach.  In response, Krajewski et al. (2003) formulated a plan for developing such a 
demonstration. 

In this report we present first results of an extensive data analysis and development of an 
initial version of ensemble generator that could be used operationally to provide users with 
plausible realizations of rainfall fields.  Following Krajewski et al. (2003), we describe (1) a 
formulation of the radar-only PQPE algorithm; (2) the corresponding extensive data analyses and 
identification of appropriate model and estimation of its parameters based on actual data from 
Oklahoma; and (3) the ensemble generator and examples of its workings with potential 
operational use. 
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B. FORMULATION OF THE PQPE METHODOLOGY 
During the Phase II of this project, we continued our analysis and refinement of the 

methodological framework for the PQPE problem that was initiated in Phase I (Krajewski and 
Ciach 2003).  For the completeness of this report, we briefly summarize the proposed 
methodology for the PQPE algorithm development as we understand it now. 

B.1. Basic Definitions 
The four fundamental notions defined below are used throughout this report: 

• True rainfall: The amount of rain-water that has fallen on a specified area in a 
specified time-interval. 

• Radar-rainfall (RR): An approximation of the true rainfall based on radar data 
corresponding to the same spatio-temporal domain. 

• RR uncertainties: All systematic and random differences between RR and the 
corresponding true rainfall. 

• Ground reference (GR): Estimates of the area-averaged rainfall accumulations based 
on rain-gauge data that are used to evaluate RR products. 

B.2. Problem Description 
The progressive evolution of the operational RR products has been guided by the attempts to 

quantify and to reduce the uncertainties in the RR estimates.  The currently existing RR maps 
produced operationally by the NWS (the Stage II and III products) are just arrays of numbers 
describing the spatial distribution of approximate rainfall accumulation values that are obtained 
based on the WSR-88D reflectivity measurements corrected with the available concurrent rain-
gauge data.  Application of the term “quantitative precipitation estimates” QPE to such products 
implies that the maps are completed with quantitative information about the product 
uncertainties.  Without such information about the relation of the RR product to the 
corresponding true rainfall, both the notion of “quantitative” and the mathematical term 
“estimation” would be meaningless in this context.  However, despite a wide use of this term, the 
operational QPE products are devoid of their uncertainty information.  We believe that the 
development of the probabilistic quantitative precipitation estimation (PQPE) products based on 
sound empirical evidence will be the optimal comprehensive solution for this pathological 
situation. 

The probabilistic products, both in meteorology and hydrology, convey the inferred 
information about the unknown true value of a physical quantity in terms of its probability 
distribution rather than its one “best” estimate (e.g. Krzysztofowicz 2001).  Thus, the radar 
PQPE product can be mathematically defined through the conditional probability distributions of 
the likely true rainfall, given the current radar measurements and other available information.  
These distributions can be determined by specific parameter values of a general uncertainty 
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distribution model developed in this project.  The model parameters have to determine 
unambiguously the uncertainty distributions of given RR estimates in different rainfall regimes 
for each operationally useful distance from the radar and spatio-temporal averaging scale.  From 
such a general PQPE product, one can directly derive any specific uncertainty characteristics (for 
example, the RR expectation, standard errors, probabilities of exceedence, or an ensemble of 
probable rainfall maps) that can be required for different operational applications.   

B.3. Basic Requirements 
During the discussions with the panel of experts engaged in the Phase I of this project 

(Krajewski and Ciach 2003), it was agreed that any method that will be applied to generate the 
PQPE products has to satisfy several key requirements.  These requirements were further 
analyzed and refined in the course of the Phase II of the project.  We summarize them briefly 
below: 

 

1. The method has to be empirically “verifiable.”  Conditions have to be assured to 
systematically evaluate the degree of agreement between the PQPE results and the 
RR uncertainties estimated based on reliable GR in selected “validation sites.” 

 

2. The method has to be adjustable to different synoptic and topographical 
situations, and to the changing operational environment, by its model parameter 
calibration using available information. 

 

3. The method has to account for the spatio-temporal dependencies in the errors 
process to provide the PQPE products over a broad range of spatial and temporal 
scales used in different hydrological applications. 

 

4. The method has to work with the current reflectivity-only WSR-88D algorithms, 
the multi-parameter (MPE) algorithms using the available concurrent rain-gauge 
and satellite data, and the polarimetric algorithms (using differential reflectivity 
and differential phase-shift) available operationally after the upcoming upgrades 
of the WSR-88D radars. 

 

5. The method has to provide the PQPE products in a format appropriate for their 
efficient usage in different hydrological applications. 

 

B.4. Development of the PQPE Algorithm 
During the previous phases of this project, it has been agreed that the product-error-driven 

(PED) modeling approach for the PQPE algorithm, described in our reports for the Phase1 and 
Phase 2, will be developed using a fully empirically-based framework.  This decision 
acknowledges the obvious fact that building a PQPE algorithm has to be preceded by the 
development of a realistic and parsimonious mathematical model of RR uncertainties underlying 
the probabilistic nature of RR products.  Only a thorough and comprehensive data analysis can 
result in the identification of such a realistic model suitable for the PQPE applications.  
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However, the actual exploratory data analysis of the PPS products has not started yet because the 
preparation of the data sample has not been completed.  Therefore, the algorithm development 
efforts in the Phase 3 concentrated on the following tasks: 

 

1. Development of the PED modeling methodology; 
2. Preparation of the large data sample; 
3. Testing the GR error filtering method. 

 

Below, we briefly describe the work performed in these tasks and the results that have been 
achieved so far. 

B.4.1. Development of the PED Modeling Methodology 
There are many sources of errors in RR products and we discussed them in the Phase 1 report.  

The PED approach focuses on the combined effect of all the errors, its modeling, and estimation 
of the model parameters.  This follows the fact that one cannot delineate the separate effects 
using the available measurable quantities.  In practice, only the combined effect on the RR 
estimates can be measured and quantified.  Our objective is to create a flexible parameterized 
mathematical model of the relation between the RR product values and the corresponding True 
Rainfall conditioned on different situations.  The four conditions that we plan to quantify are the 
distance from the radar, space-time averaging scale, rainfall regime, and the PPS setup.  In the 
PQPE algorithm, this model will be used to quantify the probability distributions of the probable 
True Rainfall, given the RR value and the other abovementioned conditions. 

B.4.1.1. General Structure of the Model 

The relationships between RR and the corresponding truth can be described by the family of 
the conditional bivariate frequency distributions that we call the “true verification distributions” 
(TVD): 

 

(Ra , Rr)L,T,d,S  =  f(Ra , Rr | L, T, d, S) (1) 

 

where Ra and Rr are the corresponding (concurrent and collocated) True Rainfall and RR values, 
respectively, L is the spatial averaging scale, T is the temporal scale (accumulation interval), d is 
the distance from the radar station, and S denotes the type of the precipitation system (rain 
regime).  In principle, these distributions can be retrieved from the radar-gauge data samples, if 
additional information on the rainfall variability is available (see section B.4.3 below). 

To simplify the notation, we can focus on one spatiotemporal resolution (L, T), distance (d) 
from the radar and rain regime (S).  To model the (Ra , Rr) distribution for these specified 
conditions, it is convenient to use the following functional-statistical representation: 

 

Ra = h(Rr) e(Rr) (2) 
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where h(·) is a deterministic distortion function, and e is a random variable representing the 
random uncertainties that we call the multiplicative random uncertainty factor.  If parametric 
models of the deterministic function, h(Rr), and the stochastic function, e(Rr), are identified and 
its parameter estimates conditioned on a specific situation are known, this representation 
prescribes the way in which the ensembles of probable True Rainfall values, or only its selected 
statistical characteristics required by the users, can be generated for each given value of RR. 

B.4.1.2. Main Elements of the Model 

Because all systematic biases can be described by the deterministic distortion function, we 
can assume without any loss of generality that the mean of the random uncertainty factor is 
always equal to unity (E{e}=1).  This allows the rigorous definition of the h() function based on 
the general regression formula: 

 

h(x) = E{Ra | Rr=x}, (3) 
 

which, in practice, can be identified and estimated using any version of the nonparametric 
regression apparatus (Hardle 1990; Simonof 1996).   

Although the mean of the multiplicative random uncertainty factor, E{e(Rr)}, is equal to unity 
for each value of Rr, its distribution can vary with Rr.  The first step in identifying this 
dependence is to estimate the e(Rr) variance as a function of Rr.  This can be done in the similar 
way as estimating the h(Rr) function.  An example of such a procedure is shown in the section 
B.4.1.3 below.  Next, we have to find a suitable parametric model for the e(Rr) distributions.  
This can be achieved based on extensive data analysis by examining the shapes of the actual 
e(Rr) distributions under different values of the conditioning factors.  Since the extreme rainfall 
events are the most important in hydrological practice, it is essential that the selected probability 
distribution model describes the uncertainty distribution tails with a reasonable accuracy.  
Examples of the models that have distinctly different tails are the gamma, lognormal and beta 
distributions.  Each of them can lead to different decisions based on the PQPE results.  The 
goodness-of-fit of these and several other models will have to be tested on the large data sample 
before a justified choice can be made. 

Once parametric models of the h(Rr) function and the e(Rr) variable (or the family of random 
variables indexed by Rr) are identified, the dependence of their parameters on the averaging scale 
(L, T), distance from the radar (d) and rain regime (S) can be estimated based on the family of the 
verification distributions (estimated bivariate distributions of RR and the corresponding True 
Rainfall): 

 

(Rr , Ra)Ln,Tn,d,S ,  n=1, 2, … , Nmax (4) 

 

where the distributions are sampled for several spatio-temporal scales that are multiples of the 
original RR product scale.  Spatio-temporal dependencies in the model parameters can then be 
modeled to reproduce the dependence of these conditional model parameter estimates on the 
discrete series of scales (An ,Tn), for each given distance from the radar (d) and precipitation 
regime (S). 
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It is still unclear to us how to stratify the data sample according to the precipitation regime (S) 
so that this information is meaningful for the PQPE methodology.  The appropriate classification 
has to be based on data that are readily operationally available during the PPS processing, 
preferably the radar data.  In addition, it should exhibit distinct differences in the PED model 
parameter values for the different regimes.  One of such classification schemes by Steiner et al. 
(1995) has been investigated by Ciach et al. (1997).  Our results indicated that its effects on the 
RR estimation algorithm are practically the same as the stratification of the data sample 
according to different RR values.  Consequently, using this specific precipitation regime 
classification can only complicate the PQPE algorithm unnecessarily without adding any value to 
it.  A classification of the synoptic situation, or some other information (e.g., the zero isotherm 
level) based on the operational weather forecasts could perhaps be a better alternative to the 
schemes using the radar data only.  However, the best way to use this external information 
remains to be investigated.  We hope that the PQPE Advisory Team will help us with this issue. 

Obviously, the successful development of operationally applicable parametric models of the 
h(Rr) function and the e(Rr) variable will most likely require a number of generalizations and 
simplifications in the mathematical description of the abovementioned dependences.  The 
specific formulas will have to be identified during the planned extensive analysis of large data 
samples. 

B.4.1.3. Preliminary Analysis of RR Error Structure 

In the Phase 3 of this project, we performed a preliminary study of the basic elements of the 
RR error structure.  It is an extension of our first analysis that we described in the Phase 1 report.  
This analysis is based on a relatively small data sample of 50 rainy days and its main purpose 
was to develop and test the first version of the data processing and functional estimation tools 
that will be applied to the large samples of the operational RR products.  The radar data from the 
Tulsa, Oklahoma, NEXRAD station (KINX) were quality controlled and converted into hourly 
accumulations in polar grids over 23 surrounding rain gauge stations (Vignal and Krajewski 
2001). 

Because there are two variables the (Ra , Rr) distribution, there exist two mathematically 
equivalent ways to represent it in the form of a functional-statistical relationship between these 
variables.  The first of them is defined in Equation (2), whereas the second is obtained by 
exchanging the Ra and Rr variables in this Equation.  Although the second representation is more 
suitable for characterizing the RR error structure that for building the PQPE ensemble generator, 
we used it in this preliminary analysis to obtain results that are formally comparable with the 
results that we had obtained previously.  From the point of view of the estimation technique, both 
representations are exactly the same and the same data processing tools can be applied to both of 
them.  However, to avoid confusion, we denote the equivalent deterministic and random 
components as h1 and e1, respectively.  Additionally, we simplified the analysis by assuming the 
raingauge rainfall accumulations, Rg, for the approximations of the true rainfall Ra.  In fact, using 
our area-point error filtering procedure (see section B.4.2) was impossible for this sample due to 
the lack of the corresponding small-scale rainfall variability data. 

Using the 50-storm data sample, we estimated the deterministic error function, h1(·), and the 
variance of the multiplicative random error, e1(·), as functions of the accumulation time.  At this 
stage, we did not consider the dependences on the spatial scale, distance from the radar, or the 
rain regime.  The temporal dependences in the RR error process were estimated for five 
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accumulation intervals: 1, 3, 6, 12, and 24 hours.  The deterministic distortion function was 
estimated using the following scheme of moving-window averaging: 

 

h1(r)  ≈  < Rr | r-u ≤ Rg  ≤ r+u > (5) 
 

where Rg is the rain gauge rainfall accumulation and u is the averaging window size.  The 
window size was increased with Rg to compensate for the decreasing number of data points.  
These functions, for the five time scales, are shown in Figure 1. 

The results in Figure 1 show that the systematic distortion component is a nonlinear function 
of the True Rainfall.  This function is a way to quantify the conditional biases in different RR 
products that have been qualitatively demonstrated long time ago by Austin (1987) and 
investigated using an idealized analytical model by Ciach et al. (2000).  For the larger 
accumulation intervals (6, 12 and 24 hours), these conditional biases are relatively small and 
invariant in respect to the time-scale.  The outstanding results for the 1-hour and 3-hour time-
scales might be the effect of large rain gauge representativeness errors, however, they might as 
well indicate a distinctly different uncertainty structure at the short scales.  This question requires 
more extensive analyses using the area-point error filtering method described in section A.1.3 
below. 

  
 

Fig. 1.  Systematic distortions, h, as functions of True Rainfall for 
the five accumulation intervals. 
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The standard deviation of the random error factor as a function of the rain gauge rainfall 
accumulation for the same five accumulation intervals is shown in Figure 2.  The e1(·) variances, 
σe1

2, as a function of Rg were estimated in a similar way as the h1(·) functions: 

 

σe1
2(r)  ≈  < (e1(Rg)-1)2 | r-u ≤ Rg  ≤ r+u > (6) 

 

using the same moving-averaging scheme with variable window size. 

The results in Figure 2 show that, for each of the five accumulation intervals, the standard 
deviation of the multiplicative random uncertainty factor decreases rapidly with increasing 
rainfall and then stabilizes at the level of about 30%.  The estimates of the random component 
seem to be less sensitive to the shorter time-scales than the estimates of the systematic distortion 
function.  This invariance, if confirmed on the large data sample that we currently prepare, can 
be a good basis to reduce the number of parameters of the final PED model that will be used for 
the PQPE algorithm. 

  
 

Fig. 2.  Standard deviations of the multiplicative random error 
factor, e, as functions of True Rainfall for the five accumulation 
intervals. 

 
 
Note that the results shown in Figures 1 and 2 are based on a research sample that was 

carefully selected and quality controlled.  A well tested and sample-calibrated ground clutter and 
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AP reduction procedure based on a neural-network algorithm was applied prior to the Z-R 
conversion (Vignal and Krajewski 2001).  The coordinate transformation errors are not present 
because the RR estimates are only in the polar coordinates.  Additionally, a correction of the 
vertical profile of reflectivity (VPR) reduced the RR errors considerably at larger distances 
(Vignal and Krajewski 2001).  Consequently, the uncertainties presented above can be 
significantly smaller than what we would obtain based on the operational PPS products.  
Therefore, it is essential to repeat the analysis on the large sample of the PPS products that we 
described in section C.1. 

 

B.4.1.4. Two Idealized Implementations 

One of the most difficult elements of the PQPE methodology concerns including the spatial 
and temporal dependences that exist in the RR uncertainty process into the probabilistic model 
that we create using the PED approach.  In the course of developing a viable technique to treat 
this problem, we started with two idealized implementations of the PQPE algorithm that are 
based the following simple model of the (Ra , Rr) distribution: 

 

Ra =  Rr e (7) 

 

where the random uncertainty factor, e, is lognormally distributed and does not depend on the 
RR value (a multiplicative homoscedastic model).  Both algorithms are designed to simulate 
ensembles of the probable true rainfall conditioned on the RR values obtained from the radar 
data.  The first algorithm includes the temporal dependences in the uncertainty process, whereas 
the second algorithm generates ensembles of spatially correlated uncertainty fields.  These 
dependences in the e variable were modeled based on a meta-Gaussian model that starts with a 
time series (or spatial field) of the uncorrelated standard normal white noise.  Next, this variable 
is correlated in time (or space) using weighted moving-window averaging with a specified 
averaging mask, and the outcomes are transformed into the positively defined random process 
through the exponential transformation.  The parameters of this transformation are such that the 
resulting variable has the mean equal to unity and the specified variance. 

The temporally correlated 1-D version of this simple PQPE algorithm was applied to generate 
the ensembles of time-series of probable true rainfall for the lumped flash flood forecasting 
model that we implemented and upgraded into probabilistic framework with the help of the 
Hydrologic Research Center.  This numerical experiment is a part of the PQPE project and is 
described in section A.2 of this report.  The flow-chart of this algorithm consists of the following 
steps: 

 

1. Generate an 1-D array of independent standard normal deviates. 
2. Apply the weighted moving-window averaging to the array. 
3. Apply the exponential transformation to the smoothed array. 
 

This procedure generates one time-series of the time-correlated meta-Gaussian uncertainty 
process.  It is repeated to obtain the required number of the ensemble members.  The weighted 
moving-window averaging can, in principle, be performed using any averaging mask.  This 
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allows fairly flexible adjustment of the simulated temporal uncertainty structure to the empirical 
estimates that we will obtain from the data analysis.  At this stage, we used a simple polynomial 
mask for this smoothing.  The parameters controlling the algorithm outcomes are: 

 

1. The number of realizations in the ensemble. 
2. The length of the simulated time-series. 
3. The size and shape of the smoothing mask. 
4. The standard deviation of the uncertainty factor. 

 

The 1-D algorithm described above is fast and enables generating large ensembles consisting 
of 105, or more, realizations for the probabilistic hydrological forecasting model.  However, it 
can only be applied to the lumped rainfall-runoff models. 

The spatially correlated 2-D version of the PQPE algorithm was applied to generate the 
ensembles of spatial fields of probable true rainfall.  It can be applied to a distributed 
hydrological forecasting model, or used to compute the RR uncertainty bounds for different 
spatial scales.  The flow-chart of this algorithm consists of the following steps: 

 

1. Generate a 2-D array of independent standard normal deviates. 
2. Apply the weighted moving-window averaging to the array. 
3. Apply the exponential transformation to the smoothed array. 

 

This procedure simulates one field of the space-correlated meta-Gaussian uncertainty process 
and is repeated to generate the required number of the ensemble members.  The weighted 
moving-window averaging can, in principle, be performed using any averaging mask.  It can also 
be adjusted to the empirical estimates that we plan to obtain from the data analysis.  The 
parameters controlling the algorithm outcomes are: 

 

4. The number of realizations in the ensemble. 
5. The size of the simulated spatial array. 
6. The size and shape of the smoothing mask. 
7. The standard deviation of the uncertainty factor. 

 

The 2-D algorithm described above is computationally demanding and the largest ensembles 
that we generated so far consisted of up to 103 realizations.  However, it can be used in a much 
broader range of applications than the 1-D algorithm.  Therefore, it will be the basis for the 
development of the full PQPE algorithm.  During its further development, we will extend the 
simulation procedure to include the dependences of the uncertainty factor on the RR values and 
the distance from the radar, and implement different probability distribution models. 

 

B.4.2. GR Error Filtering 
We developed a conditional distribution transformation (CDT) method for improving RR 

uncertainty analyses that use sparse rain gauge networks as the ground reference.  The objective 
of the CDT method is perform a conditional point-area rainfall distribution transformation in 
order to filter out the rain gauge representativeness errors from radar-rain gauge samples.  The 
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application of the rain gauge error filtering is essential for the estimation of the spatial 
dependences in the PQPE model because large differences between the sampling areas of radar 
and rain gauge measurements can render the results of direct comparisons meaningless.  We 
tested the validity and evaluated the accuracy of the CDT method.  The tests were based on the 
data from the USDA Agricultural Research Service Micronet.  A detailed description of the CDT 
method and its tests has been documented in Habib at al. (2004).  Below, we present only an 
outline of this effort and its results. 

B.4.2.1. Point-Area Distribution Transformation Method 

Our implementation of the point-area transformation scheme follows in principle the 
methodology presented in Morrissey (1991).  Let Rp represent point (single rain gauge) rainfall 
with mean E{Rp} and variance Var{Rp}, and Ra represent the rainfall averaged over an area A 
with mean E{Ra} and variance Var{Ra}.  The means of the two corresponding processes are 
equal, i.e. E{Ra}=E{Rp}, and the variances can be related to each other based on the spatial 
correlation in the rainfall field in the following way: 
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Now, given the probability distribution of Rp, we want to estimate the distribution of Ra that 
has the same mean as Rp, but different and known variance.  As an approximate solution for this 
problem, we adopted a nonparametric distribution transformation method proposed by Journel 
and Huijbregts (1978). 

The probability distribution of rain gauge measurements Rp can always be represented using a 
transformation that expresses Rp as a function of the standard normal random variable Rp=φRp(u), 
where u is the standard Gaussian variable and the equality is in the sense of the same probability 
distributions (Journel and Huijbregts 1978).  This function is approximated using a 
decomposition (expansion) based on Hermite polynomials: 
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where Hi(.) are Hermite polynomials of the order i and ψi are their expansion coefficients, and 
the first four Hermite polynomials are shown as an example.  The decomposition coefficients are 
fitted to the empirical frequency distribution of Rp using an iterative procedure described in 
Journel and Huijbregts (1978).  The coefficients ψi are related to the mean and variance of the 
point rainfall as follows: 

 

ψo = E{Rp}, (10) 
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The main assumption of the point-area transformation scheme proposed by Journel and 
Huijbregts (1978) is that the function φRa , expressing the areal rainfall as a function of the 
standard normal random variable (just as φRp represents the point rainfall), has the same Hermite 
expansion as φRp, but its decomposition coefficients are modified by a single scaling factor, a, in 
the following way: 
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where the coefficients ψi are the same as in the point rainfall decomposition.  Note that this 
distribution transformation preserves the distribution mean since a0=1.  On the other hand, the 
variance of the transformed distribution of the areal rainfall can now be expressed as: 
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and thus, it depends on the known decomposition coefficients ψi of the rain gauge rainfall and 
the scaling factor, a, only.  This equation is a monotone function of a.  Thus, if the variance of Ra 
is known, the scaling factor can be determined, using any iterative or graphical method, so that 
this equality is fulfilled. 

Given the estimates of the coefficients, ψi, and the scaling factor, a, the computer generated 
standard normal deviates can be substituted into the Hermite expansion to simulate the 
distribution of the area-averaged rainfall.  This point-area transformation procedure is general.  It 
can be applied to the whole data sample, as well as to its sub-samples selected (conditioned) in 
any specific way.  Since our focus in this study is on quantification of RR uncertainties, the 
distributions and their transformation have to be conditioned on the radar estimates, Rr. 

The scheme of this conditional distribution transformation (CDT) can be summarized as 
follows.  First, the rain gauge rainfall values in the data sample are grouped into sub-samples that 
are conditioned on a number of ranges of the RR values, (Rp|Rr=r), each range centered on a RR 
value, r.  The number of the sub-samples and their sizes depend on the amount of available data.  
Then, the correlation function of the point rainfall conditioned on the radar estimate value, 
(ρ|Rr=r), is estimated.  This enables the estimation of the conditional variances of areal rainfall, 
Var{Ra|Rr=r}.  For each of the sub-samples (Rp|Rr=r), the conditional coefficients, (ψi|Rr=r), of 
the Hermite polynomial decomposition and the conditional scaling factors, (a|Rr=r), are 
estimated.  Finally, the conditional distribution transformation functions (φRa|Rr=r) are computed 
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and used to generate values that correspond to the areal rainfall (Ra|Rr=r).  These generated 
values can then be used to provide the desired estimates of the conditional distributions of the 
true area-averaged rainfall, f(Ra|Rr), conditioned on RR.  They can be applied to reconstruct the 
bivariate distribution of RR and the corresponding true areal rainfall based on the following 
formula: 

 
f(Ra , Rr) = f(Ra|Rr) f(Rr) , (14) 

 
which can then be used to identify the PQPE model at different spatiotemporal scales as outlined 
in the previous Section of this report. 

B.4.2.2. Tests of the CDT Method 

The goal of the point-area transformation scheme is to obtain the estimates of conditional 
probability distributions of the true areal rainfall, conditioned on RR values, based on the 
conditional distributions of rain gauge rainfall and information on the conditional spatial 
correlation in the rain-field. 

To evaluate the performance of the CDT method we used the data sample of point rainfall, 
areal rainfall and the corresponding RR estimates over three testing boxes within the USDA 
Agricultural Research Service Micronet that are indicated in Figure 3. 

Only one time scale of 15 minutes was considered at this stage.  We stratified the sample into 
sub-samples of four intervals of the 15-minute RR values, Rr.  For each sub-sample separately, 
we carried out the following procedure: 

 
 
 

Fig. 3.  A layout of the Little Washita Micronet with the three 
rectangular areas of about 19 km by 18 km that are used for testing 
the CDT method.  Rain gauges within each area provide 
approximations of the true areal rainfall. 

 



 18

 
1. Construct the sample of concurrent point and areal rainfall for a specified spatiotemporal 

scale.  The Ra values are approximated by averaging the rain gauge observations within 
the area of interest, whereas the Rp values come from all the individual gauges. 

 

2. Estimate the sample variances of the point and areal rainfall values.  Estimate the Hermite 
expansion coefficients for the point rainfall and the value of the scaling coefficient. 

 

3. Perform the distribution transformation procedure described in section 2 to retrieve the 
areal rainfall distribution. 

 

4. Compare the retrieved areal rainfall distribution against the observed one. 
 
The estimates of the scaling coefficient, a, assumed values of about 0.6, for each of the sub-

samples.  The conditional quantile-quantile plots resulting from these tests are shown in Figure 4. 

The solid dots in the plots show the comparisons of the quantiles corresponding to the same 
probability of exceedence for the transformation-based rainfall distributions as a function of the 
gauge-averaged (approximating the true areal) rainfall distributions.  The open circles in the plots 
show the comparisons of the corresponding quantiles for the single-gauge rainfall distributions as 
a function of the gauge-averaged rainfall distributions.  The transformation-based distributions 
are in a good agreement with the observed conditional distributions of areal rainfall and the 
degree of improvement of the radar rain gauge comparison can be seen from the comparison 
with the single rain gauge rainfall distributions.  The tests confirm that the CDT method is able 
to retrieve the conditional distributions of the areal rainfall with quite good degree of accuracy. 



 19

 
Fig. 4. A quantile-quantile plot of the cumulative rainfall 
distributions conditioned on the radar rainfall.  Filled circles 
correspond to the transformation-based versus the true areal 
rainfall distributions.  Open circles correspond to the point (single-
gauge) versus the true areal rainfall distributions.  The sample was 
stratified into four ranges of RR estimates.  In the plots, n refers to 
the sample size in each range. 

 
 

B.4.2.3. Discussion 

The conditional scaling factors in the CDT method and their dependence on the spatial 
averaging scale are determined only by the distributions and the spatial correlation functions of 
the radar-conditioned rain gauge rainfall.  These quantities are, in principle, measurable and no 
other fundamental assumptions are necessary to use the CDT in practical applications.  However, 
successful application of the CDT method requires sufficiently accurate information on the 
rainfall spatial correlation structure conditioned on the radar estimates over the spatial scales 
below the resolution of the RR product.  This information is available in many situations where 
dense rain gauge clusters exist within the sparse networks (e.g., in Oklahoma, or Iowa).  Of 
course, the estimates of spatial correlation are bound to be uncertain.  The effects of these 
uncertainties on the CDT scheme are complex and their quantification remains to be 
investigated.  However, one thing that we can be sure of is that, whatever are the uncertainties in 
the conditional correlations, the CDT always reduces the RR uncertainty bounds in comparison 
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with what we could obtain if we treated the single-gauge data as the corresponding truth.  By its 
mathematical nature, the CDT just cannot increase the estimated RR uncertainty bounds.  Of 
course, these RR uncertainty estimates are also not perfectly accurate, but this gauge-error 
filtering method always corrects them in the right direction.  The effectiveness of this correction 
is clearly demonstrated in Figure 4 by comparison of its results and the single-gauge 
performance.  As one can see, the departures from the one-to-one line for the CDT transformed 
and the true area-average rainfall distributions are about ten times smaller than the discrepancies 
between the single-gauge and true area-average rainfall distributions.  Error reduction by an 
order of magnitude is a very good performance for a relatively simple statistical method. 
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C. DATA ANALYSES 
Development and testing of the above described PQPE framework requires massive radar and 

rain gauge data sets.  As we argued in Krajewski and Ciach (2003) and Krajewski et al. (2003), 
for the PQPE algorithm to be meaningful it must be strongly based in empirical data.  
Fundamentally, two data types are required for this: (1) radar-rainfall estimates and (2) rain 
gauge data.  While the PED approach relies on radar-rainfall products, it is important to begin 
with basic radar volume scan data.  This way the calculated products are consistent.  For the rain 
gauge data the basic issue is data quality (e.g. Steiner et al. 2000).  Below we discuss our 
progress thus far in data collection and preparation. 

C.1.1. Preparation of the Large Data Sample 
To facilitate our studies we compiled a large sample of Level II radar reflectivity data 

acquired from the National Climatic Data Center (NCDC) for the Oklahoma City NEXRAD 
WSR-88D site (KTLX).  The current sample covers the six-year period from January 1998 to 
December 2003.  We used the Level II data as input to Build 4 of the Open Radar Product 
Generator (ORPG) Precipitation Processing System (PPS) software system and generate the 
Digital Precipitation Array (DPA) products which represent one-hour accumulations and are 
given on the Hydrologic Rainfall Analysis Project grid (Reed and Maidment 1999).  For rain 
gauge data we use observations from three networks: (1) the Oklahoma Mesonet (we acquired 
the data from the JOSS Office in support of another NOAA-sponsored project); (2) the USDA 
Agricultural Research Service (ARS) Micronet (we acquired the data through the OHD), and (3) 
the University of Oklahoma Environmental Verification and Analysis Center (EVAC) Piconet 
located at the Oklahoma City International Airport (we established and maintained the network 
ourselves).  We described these data sets in more detail below. 

C.1.1.1. The 6-year Sample of the KTLX Data 

This sample consists of about 350,000 data files and contains radar observations collected 
during the years of 1998-2003.  We converted the files from the standard UNIX compression 
format that is still used by the NCDC to the much more efficient “bzip” format that is currently 
used as a standard by the OHD.  We decided to adapt to this standard for its speed and efficient 
use of disk space. 

We performed a quality check of all the files which revealed occasional errors in the file 
structure.  About 7,000 (or 2%) of the files are affected by these errors.  The impact of these 
errors on the automatic ORPG data processing has been tested and discussed with the OHD 
specialists.  We excluded these suspect files from further processing. 



 22

C.1.1.2. Oklahoma Mesonet Data 

The Oklahoma Mesonet (Brock et al. 1995) is known as perhaps the best regional network of 
surface meteorological sensors in the country.  The stations are fairly uniformly distributed over 
the state and thus the data cover the full range of distances from the KTLX radar. 

The Mesonet rainfall data are provided as cumulative values, reset at the beginning of each 
day.  For this dataset, a flagging system is associated with the data to indicate data quality.  
While preprocessing the data and organizing them as 5-minute rain gauge rainfall, we found 
about 100 entries of negative accumulation that were erroneously flagged as good quality data.  
We reported these cases to the Oklahoma Mesonet’s quality-assurance team and they manually 
flagged these cases in their database.  Based on our input they investigated the causes of the bad 
data and decided to reprocess their entire data set.  They will provide the data to us as soon as the 
reprocessing is completed (probably around June 20th). 

Within the KTLX umbrella, there are about 100 rain gauges, almost uniformly distributed, 
covering a wide range of distances (from about 25 km to the edge of the radar umbrella).  Four of 
the Mesonet stations are within or very close to the Micronet network.  The information 
obtainable from the flags in these Mesonet stations could be useful during the QC of the 
Micronet data. 

C.1.1.3. ARS Micronet Data 

We acquired the corresponding rain gauge data through the OHD.  We received the 5-minute 
rain gauge accumulation data for 42 stations covering the Little Washita watershed located about 
90 km south-west from the KTLX WSR-88D site (see Figure 5).  One limitation of the analysis 
based on this ground reference is that it covers only a very limited range of the distances from 
the radar (from about 70 km to about 105 km). 

The original ARS Micronet archive is organized in a very inefficient way and consists of 
about 640,000 small files.  In addition, the timing convention in this archive is incompatible with 
our radar data.  To make the data usable, we preprocessed the entire archive and converted it to 
72 monthly files of the 5-minute rain gauge rainfall.  During this preprocessing, we detected 
several errors in the data.  These errors were corrected, whenever possible, or flagged as missing 
data records. 

The ARS Micronet data we were provided did not have quality control (QC) flags.  At this 
stage, we have not yet performed extensive QC on the rain gauge data.  However, while 
organizing the data in 5-minute rain gauge rainfall, we checked for negative accumulations and 
we found more than 20 of such entries.  We also found a case where high rainfall was detected 
by only one station but no rain was collected by any other gauge for few hours before and after.  
We have corrected these errors, whenever possible, or flagged them as missing data records. 

Once organized the dataset in a more efficient way, we have georeferenced the rain gauges to 
the HRAP grid, and extracted the corresponding and collocated radar values.  We have then 
accumulated the rain gauge rainfall to hourly scale to have the same temporal resolution of the 
RR estimates.  
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Figure 5.  Schematic map of the Oklahoma/Kansas area and the relevant rain gauge networks.  
(We did not use data from the CASES network in this study.) 
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C.1.1.4. Oklahoma Piconet Data 

 

To be completed. 

 

C.1.2. Basic Data Characteristics 

C.1.2.1. Seasonal Partitioning 

Since it is well known that seasonal variability strongly affect the uncertainty of radar-rainfall 
products, we performed a simple analysis of data to determine a possible division of the sample 
into adequate periods that are more homogeneous in terms of their statistical characteristics.  As 
an index, we used the rain-weighted temperatures (Trw) for each month, defined as: 
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where Ri and Ti are the rainfall and temperature measured at the ith station.  

Figure 6 shows the monthly Trw averaged over the six years of data.  Based on this plot, we 
have decided to divide the dataset into three season: cold (January, February, March, November 
and December), where the average Trw is below or around 10°C; warm (April, May and 
October), where the average Trw is between 15 and 20°C; hot (June, July, August, September), 
where the average Trw is above 20°C. 

In Figure 7 a different characteristic distribution of the rain-wighted temperature is evident: 
the cold season is positively skewed, the warm season is more symmetrical, while the hot season 
is negatively skewed.  

C.1.2.2. General Data Features 

Figure 8 shows the time series of the monthly accumulation from gauge and radar estimates.  
It is possible to notice how the radar tends to have larger values than the rain gauge.  This feature 
is more evident from Figure 9, where, for most of the months, the value of the bias is smaller 
than 1.  It seems that, for some months, the value of the bias is very large.  However, looking at 
Figure 8, it is possible to notice how these cases correspond to months with low accumulation.  
Overall, there is good agreement between radar and gauge estimates, as illustrated by high 
correlation coefficient values (Figure 10). 
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Fig. 6.  Histogram of the rain-weighted temperature (Trw) according to month, averaged over the 
six-year period under study. 
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Fig. 7.  Histogram of the rain-weighted temperatures (Trw) for the three seasons and for the entire 
dataset.  Each of the seasons is characterized by a different behavior: the cold season is 
positively skewed, the warm season is more symmetrical while the hot season is negatively 
skewed. 
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Fig. 8.  Time series of the monthly accumulation for the rain gauges and the radar for the six-
year study period.  These values have to be considered as an underestimation of the true value 
because of the missing data. 
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Fig. 9. Time series of the bias for the 6-year period under study.  
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Fig. 10.  Time series of the correlation coefficient ρ between rain gauge and radar data for the 
six-year period under study.  It is possible to notice values of ρ higher than 0.8 for most of the 
months, meaning that there is a good linear relationship between radar and rain gauge data. 
 



 30

Figures 11 and 12 show the correlations and the correlation function estimated from the rain 
gauge rainfall and the collocated RR estimated for the hourly time scale.  We have chosen a 
three-parameter exponential model: 
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where d is the separation distance, θ0 is the correlation at d = 0, θ1 the correlation distance and θ2 
the shape factor.  The parameters have been obtained through a global grid search, where we 
minimized the root mean squared error, with a resolution of 0.01 for θ0, 0.1 km for θ1 and 0.01 
for θ2.  It is possible to notice how θ1 is always bigger for the gauge correlation, with the 
exception of the hot season.  These results are in agreement with those by Gebremichael and 
Krajewski (2004).  In the same figures, we have also plotted the correlation function estimated 
for the EVAC Piconet network (Ciach and Krajewski 2005).  It would be extremely useful to 
integrate the information at the small-scale from Piconet network (gauge separation distance 
smaller than 4 km) with the information at the larger scale (gauge separation distance larger than 
4 km) from Micronet and Mesonet networks.   

As mentioned before, the ARS Micronet is located between 70 and 105 km from the radar 
site.  Figure 13 shows how, within this range, the correlation coefficient ρ is above 0.8 for the 
whole dataset and the warm and hot season, while for the cold season it is below.  In all of the 
plots there is a slight tendency for the correlation to decrease for increasing distance.  Similar 
feature can be observed for the bias (Figure 14).  In this case, all of the plots have bias values 
smaller than 1.   

From the plots of correlation and bias as a function of the distance from the radar site, it is 
possible to notice how a couple of stations seem to behave differently when compared to the 
general pattern.  This information is useful for quality control. 
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Fig. 11.  Spatial correlation of the Micronet rain gauges for the three seasons and the whole 
dataset.  The solid red lines are obtained fitting the data with a three-parameter exponential 
function; the solid magenta line is from the spatial correlation function estimated by Ciach and 
Krajewski (2005) for the Piconet rain gauge network and the vertical dashed line corresponds to 
its largest intergauge distance. 
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Fig. 12.  Spatial correlation of the radar data at the locations of the Micronet rain gauges for the 
three seasons and the whole dataset.  The solid red lines are obtained fitting the data with a three-
parameter exponential function; the solid magenta line is from the spatial correlation function 
estimated by Ciach and Krajewski (2005) for the EVAC Piconet rain gauge network and the 
vertical dashed line corresponds to its largest intergauge distance. 
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Fig. 13. Correlation coefficients between rain gauge and collocated radar values estimated from 
the Micronet network as a function of the distance from the radar site. 
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Fig. 14. Bias estimated from the Micronet network as a function of the distance from the radar 
site. 
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C.1.2.3. Overall Bias 

Before estimating the deterministic and the random components, we have removed the bias 
from the radar data: 
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where Gi is the rain from the ith gauge and Ri is the corresponding value from the radar.  
According to our partitioning, we have four different values, three for the three seasons and one 
for the entire dataset: 

 
- Cold season: 0.90 
- Warm season: 0.75 
- Hot season: 0.72 
- Whole dataset: 0.78 
 

According to the definition of bias, it means that there is an overall overestimation by the 
radar, more evident during the warm and hot seasons.  It is difficult to ascribe it to a specific 
reason (e.g. radar miscalibration); in addition, we do not have to forget that the rain gauge data 
have not yet been quality controlled. 

 

 

 

C.1.3. Conditional Analyses 

C.1.3.1. Outline of the Nonparametric Procedure for Conditional Analysis 

As mentioned before, to characterize the relation between radar-rainfall (RR) and the true 
rainfall, it is possible to consider the true rainfall (RA) as the product of a deterministic distortion 
function ( )⋅h  of the RR and of the random uncertainties ( )⋅e : 

 

( ) ( )rra ReRhR ⋅=  (17) 

 

where Rr and Ra represent the corresponding (concurrent and collocated) RR and RA.  This 
relation has the flexibility to account for different spatio-temporal scales, distance from the radar 
and synoptic conditions.  
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To identify the model, it is necessary to estimate the deterministic function h(⋅) and the 
statistical distribution of the random component.  At the present stage, we have used only the 
information from the ARS Micronet network.   

Once removed the overall bias, we have defined the deterministic component h(rr) as the 
following conditional expectation: 

 

( ) [ ]rrar rRRErh == |  () 

 

The deterministic component can be approximated using a nonparametric regression method 
(Hardle 1990; Simonoff 1996).  In this study we have used the following moving-window 
averaging: 
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where:  

k is a parameter that regulates the size of the moving window centered on Rr = rr.  The size of the 
windows linearly increases with rr so that a reasonable number of data points are used for the 
estimation.  For this study, k is set equal to 1.5.  

wi is the weighting factor and it is computed as: 
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It is equal to 1 for Rr = rr and it decreases moving far from the center of the window. 

Once we have estimated the deterministic component, we are able to characterize the random 
errors ( )rRe  in the multiplicative and additive forms: 
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From these formulations, it is possible to notice that the conditional expected values of e(⋅) are 
always equal to: 
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[ ] 1| == rr rReE    (multiplicative form) 

[ ] 0| == rr rReE    (additive form) 

while the standard deviations of the random component σe( rr ) depends on RR estimates: 
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Using the same nonparametric approach described above, we have estimated σe( rr ) as: 
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C.1.3.2. Deterministic Component of the Error 

The deterministic distortion function h(�) describes all the systematic biases.  We have 
estimated it using the aforementioned nonparametric framework for four different time scales (1, 
3, 6, and 24 hours) for the three seasons and the whole dataset.  Due to the way RR is estimated, 
we have not considered the whole dataset, but only the scans separated by at least 20% of the 
temporal resolution.  In this way, we have more independent information.   

Figures 15 and 16 show the results of analysis.  It is possible to notice how the curves tend to 
be close to the 1:1 line, due to the removal of the overall bias, and then bend towards the x-axis.  
In the warm and hot seasons it seems that the curves follow the 1:1 line for a longer range.  This 
can probably be attributed to the fact that there are more numerous smaller values in the cold 
season than in the warm and hot ones.  For our analysis we have considered a minimum 
weighted sample size of 100.  The vertical ticks mark the 1000 weighted sample size.  
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Fig. 15.  Rain gauge averages, conditioned on radar rainfall values, after removing the overall 
bias for four time resolutions, for the three seasons and the whole dataset.  The segments of the 
curves on the left of the vertical tick are computed using a weighted sample size larger or equal 
to 1000, while the segments on the right with a weighted sample size between 1000 and 100. 
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Fig. 16.  Rain gauge averages, conditioned on radar rainfall values, after removing the bias for 
the hourly scale, for the three seasons and the whole dataset.  The black lines correspond to 
individual gauges, the red line is obtained averaging each individual trace and the blue line is the 
sample mean (same as in Figure 15). 
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C.1.3.3. Random Component of the Error 

The random component e(�) describes all random uncertainties.  As mentioned before, it can 
be formulated in two ways, multiplicative or additive.  Its mean does not depend on the RR 
values, while the standard deviation does.  In Figure 17 we have plotted the standard deviation of 
the random component in the additive form, while in Figure 18 in the multiplicative form.  In 
Figures 19 and 20 we show gauge by gauge results for hourly scale while in Figures 21-29 for 3-, 
6- and 24-hour resolutions for the three seasons and the whole dataset.  Comparing the results 
from the two formulations, it is possible to notice how the standard deviation in the 
multiplicative form for RR > 10 mm does not depend much on the temporal scale (with the 
exception of the cold season).  This temporal invariance of e(�) in the multiplicative form will 
be very useful in the modeling effort.   

To characterize the random component in terms of its statistical distribution, we have 
computed the 0.9, 0.75, 0.50, 0.25, and 0.25 quantiles, focusing our attention on the 
multiplicative form.  As mentioned before, we know that its expected value is equal to 1 and 
does not depend on RR, while its standard deviation does.   

Looking at the results for the three seasons and the whole dataset at the four time resolutions 
(Figures 30-33), it is possible to notice how the quantiles tend to be symmetrical with respect of 
the median.  For this reason we have tried to model the empirical results with two symmetrical 
distributions (Gaussian and logistic) with mean equal to 1 and standard deviation equal to the 
standard deviation from the multiplicative formulation.  The quantiles from these theoretical 
distributions fit quite well the empirical results (sometimes with the only exception of the cold 
season), especially for large values of RR.  These results seem to support the error model 
proposed by Petersen-Øverleir (2005), who, even if using rain gauge data, perturbated his dataset 
with Gaussian-distributed deviates, justifying his choice with the Central Limit theorem. 
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Fig. 17.  Standard deviations of the random component in the additive form (mm) for the four 
temporal resolutions for the three seasons and the whole dataset.  The segments of the curves on 
the left of the vertical tick are computed using a weighted sample size larger or equal to 1000, 
while the segments on the right with a weighted sample size between 1000 and 100. 
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Fig. 18.  Standard deviations of the random component in the multiplicative form 
(dimensionless) for the four temporal resolutions for the three seasons and the whole dataset.  
The segments of the curves on the left of the vertical tick are computed using a weighted sample 
size larger or equal to 1000, while the segments on the right with a weighted sample size 
between 1000 and 100. 
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Fig. 19.  Rain deviations of the random component in the additive form (mm) for the hourly 
scale, for the three seasons and the whole dataset.  The black lines correspond to individual 
gauges, the red line is obtained averaging each individual trace and the blue line is the sample 
mean (same as in Figure 17). 
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Fig. 20.  Rain deviations of the random component in the multiplicative form (non-dimensional) 
for the hourly scale, for the three seasons and the whole dataset.  The black lines correspond to 
individual gauges, the red line is obtained averaging each individual trace and the blue line is the 
sample mean (same as in Figure 18). 
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Fig. 21.  Same as Figure 15, but for the 3-hour resolution. 
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Fig. 22.  Same as Figure 17, but for the 3-hour resolution. 
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Fig. 23.  Same as Figure 18, but for the 3-hour resolution. 
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Fig. 24.  Same as Figure 15, but for the 6-hour resolution. 
 
 



 49

 
 

10 20 30 40 50
0

5

10

15

20

25

30
Cold Season

St
. D

ev
. (

ad
di

tiv
e)

10 20 30 40 50
0

5

10

15

20

25

30
Warm Season

10 20 30 40 50
0

5

10

15

20

25

30
Hot Season

St
. D

ev
. (

ad
di

tiv
e)

Rr [mm]
10 20 30 40 50

0

5

10

15

20

25

30
Whole Dataset

Rr [mm]

Single gauge
Gauge average
Sample mean

Single gauge
Gauge average
Sample mean

Single gauge
Gauge average
Sample mean

Single gauge
Gauge average
Sample mean

 
 
Fig. 25.  Same as Figure 17, but for the 6-hour resolution. 
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Fig. 26.  Same as Figure 18, but for the 6-hour resolution. 
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Fig. 27.  Same as Figure 15, but for the 24-hour resolution. 
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Fig. 28. Same as Figure 17, but for the 24-hour resolution. 
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Fig. 29.  Same as Figure 18, but for the 24-hour resolution. 
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Fig. 30.  Comparison of the empirical quantiles (0.1, 0.25, 0.5, 0.75, 0.9) with the corresponding 
quantiles from Gaussian and logistic distributions.  For both of the theoretical distributions, the 
mean is equal to 1 and the standard deviation is the standard deviation of the random component 
in the multiplicative form.  The segments on the left of the dashed vertical line are computed 
with a weighted sample size larger or equal to 1000, while the segments on the right with a 
weighted sample size between 1000 and 100.  The temporal resolution is 1 hour. 
 
 



 55

 
 

10 20 30 40 50 60

0.5

1.0

1.5

2.0

2.5

3.0
Q

ua
nt

ile
 (m

ul
t.)

Cold Season
Empirical Quantiles
Gaussian Quantiles
Logistic Quantiles

10 20 30 40 50 60

0.5

1.0

1.5

2.0

2.5

3.0
Warm Season

Empirical Quantiles
Gaussian Quantiles
Logistic Quantiles

10 20 30 40 50 60

0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

nt
ile

 (m
ul

t.)

Rr [mm]

Hot Season
Empirical Quantiles
Gaussian Quantiles
Logistic Quantiles

10 20 30 40 50 60

0.5

1.0

1.5

2.0

2.5

3.0

Rr [mm]

Whole Dataset
Empirical Quantiles
Gaussian Quantiles
Logistic Quantiles

0.90

0.50

0.75

0.25 

0.10

 
 
Fig. 31.  Same as Figure 30 (previous page) but for the 3-hour temporal resolution. 
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Fig. 32.  Same as Figure 30 but for the 6-hour temporal resolution. 
 

 



 57

 
 

10 20 30 40 50 60 70 80

0.5

1.0

1.5

2.0

2.5

3.0
Q

ua
nt

ile
 (m

ul
t.)

Cold Season
Empirical Quantiles
Gaussian Quantiles
Logistic Quantiles

10 20 30 40 50 60 70 80

0.5

1.0

1.5

2.0

2.5

3.0
Warm Season

Empirical Quantiles
Gaussian Quantiles
Logistic Quantiles

10 20 30 40 50 60 70 80

0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

nt
ile

 (m
ul

t.)

Rr [mm]

Hot Season
Empirical Quantiles
Gaussian Quantiles
Logistic Quantiles

10 20 30 40 50 60 70 80

0.5

1.0

1.5

2.0

2.5

3.0

Rr [mm]

Whole Dataset
Empirical Quantiles
Gaussian Quantiles
Logistic Quantiles

0.90 

0.75
0.50 
0.25
0.10

 
 
Fig. 33.  Same as Figure 30 but for the 24-hour temporal resolution. 
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C.1.4. Error Dependence Analyses 

C.1.4.1. Temporal Correlation 

At present, the temporal correlation of the errors has not yet been characterized.  Only very 
few studies have tried to account for it (e.g., Nijssen and Lettenmaier 2004; Hossain et al. 2004).   

In Figure 34, we have plotted the temporal correlation of the random component of the error 
model in the multiplicative form for the hourly time resolution.  It is possible to notice a quick 
drop up to around one hour and then a subsequent slower decrease.  We think that this feature 
can be explained by the fact that the DPA product is a running 1-h rainfall accumulation and 
therefore, the information up to one-hour lag is not completely independent.  It is also possible to 
notice a stronger correlation for the cold season compared to the other two. 
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Fig. 34.  Temporal correlation of the random component in the multiplicative form for the three 
seasons and the whole dataset. 
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C.1.4.2. Spatial Correlation 

As for the temporal correlation, our current knowledge about the spatial correlation of the 
errors is extremely limited.  Some studies have compared the possible effects in case of spatial 
correlation and uncorrelation, showing how the outcomes could be sensibly different (e.g., 
Nijssen and Lettenmaier 2004; Villarini et al. 2005).   

In our study, we have found that the random component of the error in the multiplicative form 
is correlated in space (Figure 35).  Compared to the spatial correlation estimated from the rain 
gauge data (Figure 11), the scatter is larger and the correlation is lower.  However, some 
features, such as the series of points out of pattern in the cold season are the same. 
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Fig. 35.  Spatial correlation of the random component in the multiplicative form for the three 
seasons and the whole dataset. 
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D. ERROR MODELING 
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Fig. 36.  Modeling of the rain gauge averages for the cold season, for the four temporal 
resolutions.  The black lines corresponds to the empirical result, the red and blue lines are 
obtained from fitting the data with a power law up to a weighted sample size of 100 and 1000 
respectively. 
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Fig. 37.  Same as Figure 36 (in the previous page) but for the warm season. 
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Fig. 38.  Same as Figure 36 (two pages back) but for the hot season. 
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Fig. 39.  Same as Figure 36 (three pages back) but for the whole dataset. 
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Fig. 40.  Modeling of the standard deviation of the random component in the multiplicative form 
for the cold season, for the four temporal resolutions.  The black lines corresponds to the 
empirical result, the red and blue lines are obtained from fitting the data with a power law up to a 
weighted sample size of 100 and 1000 respectively. 
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Fig. 41.  Same as Figure 40 (in the previous page) but for the warm season. 
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Fig. 42.  Same as Figure 40 (two pages back) but for the hot season. 
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Fig. 43.  Same as Figure 40 (three pages back) but for the whole dataset. 
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